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Context: estimation of vehicle lateral dynamics

Knowledge of vehicle lateral velocity is essential for safety enhancement, in
particular for development of active safety systems.

Direct measurement of lateral velocity requires the use of high cost sensors
which cannot be used in production cars.

As a consequence the virtual sensing approach (observer) proposed here may
be of particular interest.

Goal : Robust estimation process of vehicle lateral velocity and yaw rate
taking into account: Model uncertainty and changes in operating conditions.
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Problem statement

Figure: Bicycle Model.

Reduces tires at each axle to a single equivalent tire;
The vehicle state is described by body-fixed lateral velocity and yaw rate
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Problem statement

The dynamics equations can be represented by (Rajamani(2011)):{
mv̇y + mr = Fyf + Fyr

Iz ṙ = lf Fyf − lr Fyr
(1)

m, Iz , lr , lf denote respectively the mass of the vehicle, the yaw moment and
the distances from the rear and the front axle to the center of gravity.
vx is a time-varying longitudinal velocity, vy is the lateral velocity of the
vehicle and r is the yaw rate.
Fyr and Fyf are the lateral rear and front forces respectively.

GTAA 2017 | IBISC | October 18, 2017 5 / 28



Problem statement

The dynamics equations can be represented by (Rajamani(2011)):{
mv̇y + mr = Fyf + Fyr
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Problem statement

Using Pacejka’s magic formula (Pacejka and Bakker (1991)), the lateral forces are
given by:

Fyi = Disin(Ci tan−1(Bi (1− Ei )αi + Ei tan−1(Biαi ))) (2)

i = {r , f } denotes rear and front of the vehicle;
Di , Ci , Bi and Ei are the characteristic constants of the tires.
αf and αr are respectively the front and rear sideslip angles of the tires.
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Problem Statement

Pacejka’s magic formula:
Nonlinear model;

Nominal conditions & small
sideslip angles: ci fixed

Fyi = ciαi

ci denotes the cornering
stiffness of tires.

Change on road conditions
or nonlinear region is
reached: ci variable

In practice, the cornering
stiffness coefficients are not
constant but time varying.
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Proposed Approach

Existing approaches →
Cornering stiffness
parameters are constants

Fyi = ciαi

Proposed approach →
Cornering stiffness
parameters are uncertain

Fyi = (ci0 + ∆ci )αi

Assumption:

∆c−
i ≤ ∆ci ≤ ∆c+

i

αi (◦)

Fyi (N)

4 8 12 16 20 24

500

1000

1500

2000

2500

3000
c+

i

c−
i

GTAA 2017 | IBISC | October 18, 2017 8 / 28



Proposed Approach

Interval Observers: Under assumptions of knowing bounds on uncertain terms
and initial conditions → Estimation of a feasible solution set of vehicle lateral
velocity and yaw rate;

Lowr bound
Upper bound

t

x+(t), x(t), x−(t)

1 2 3

1

2

3

4

. Main contribution. A new estimation process for vehicle’s lateral velocity and
yaw rate presenting many benefits over the existing state of art works, within the

dynamic estimation framework.
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System Description

Vehicle Lateral Dynamic model:[
v̇y
ṙ

]
=
[
− cf +cr

mvx
cr lr −cf lf

mvx
− vx

cr lr −cf lf
Iz vx

− cr l2
r +cf l2

f
Iz vx

] [
vy
r

]
+
[ cf

m
cf lf
Iz

]
δf (3)

where longitudinal velocity and cornering stiffness are treated respectively as
the measurable and unmeasurable time varying parameters.

LPV state-space model{
ẋ(t) = A(ρ(t), ξ(t))x(t) + B(ξ(t))u(t)
y(t) = Cx(t) (4)

where ρ(t) =
[ 1

vx
vx
]T and ξ(t) =

[
cr cf

]T .
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System Description
Adopting a switching strategy based on longitudinal velocity variation range, a
switched linear parameter-varying model for the vehicle lateral dynamics is derived{

ẋ(t) = Aσ(t)(ρ(t), ξ(t))x(t) + B(ξ(t))u(t)
y(t) = Cx(t) (5)

σ(t) : R+ → I : {1, . . . ,N} is a Switching law that indicates at each time which
mode is active.

Takagi-Sugeno (T-S) switched system ẋ(t) =
4∑

j=1

hj
σ(t)(ρ(t))Aj

σ(t)(ξ(t))x(t) + B(ξ(t))u(t)

y(t) = Cx(t)
(6)

where ρ(t) is the decision variable and hj
σ(t)(ρ(t)) are switched weighting functions,

∀j ∈ {1, . . . , 4}.
The activating functions hj

σ(t)(ρ(t)) satisfy the convex sum properties
4∑

j=1

hj
σ(t)(ρ(t)) = 1, 0 ≤ hj

σ(t)(ρ(t)) ≤ 1 (7)
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Background on Interval observer design
Before state the main results...

For any two vectors x1, x2 or matrices M1, M2 the inequalities x1 ≤ x2,
x1 ≥ x2, M1 ≤ M2 and M1 ≥ M2 must be interpreted element-wise.
A real matrix Ai , ∀i ∈ I is called a Metzler matrix if all its elements outside
the main diagonal are positive, i.e,

∃β ≥ 0, Ai + βIn ≥ 0 (8)

An important application of positive dynamics

Lemma 1. Positive Switched Systems
For a Metzler matrix Ai , ∀i ∈ I, the switched system

ẋ(t) = Aσ(t)x(t) + δσ(t)(t) (9)

is said to be a positive switched system 1 if x(t0) ≥ 0, Ai is a n× n Metzler matrix and
δi (t) ≥ 0 ∀i ∈ {1, ...,N}.

1Blanchini, F., Colaneri, P., & Valcher, M. E. (2015). Switched positive linear systems. Foundations and
Trends R© in Systems and Control, 2(2), 101-273.
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Switched Interval Observer Design + Assumptions

Assumption 1. The pair (Aj+
i ,C) is detectable ∀i ∈ I, j ∈ {1, . . . , 4}, t ≥ 0.

Assumption 2. There exist known functions u−(t), u+(t) ∈ Rm such that

u−(t) ≤ u(t) ≤ u+(t), ∀t ≥ t0 (10)

Assumption 3. There exist known constants matrices Aj+
i , Aj−

i , B+, B− ∀i ∈ I,
∀j ∈ {1, . . . , 4}, ∀ρ(t) ∈ ∇i and ∀ξ(t) ∈ Ξ =

[
[c−

r , c+
r ] [c−

f , c
+
f ]
]T such that:

Aj−
i ≤ Aj

i (ξ(t)) ≤ Aj+
i

B− ≤ B(ξ(t)) ≤ B+

The matrices Aj−
i , Aj+

i , B+ and B− can be directly calculated using the known
subset Ξ.
Notations. Aσ(t)(ρ(t), ξ0) 7−→ Aσ(t),ρ,ξ0 .
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Switched Interval Observer Design +

Theorem 1.
Assuming that the trajectory of system (6) is bounded ‖x‖ ≤ X , ∀t ≥ t0. Then, for
all initial conditions x0 such that x−

0 ≤ x0 ≤ x +
0 , there exists a convergent switched

interval observer of the TS model (6) of the form:

ẋ +(t) =
4∑

j=1

hj
σ(t)(ρ(t))(Aj+

σ(t)x
+(t) + Lj

σ(t)(y − Cx +(t)) + B+u+(t)+

(Aj+
σ(t) − Aσ(t),ρ,ξ0 )(|x +(t)| − x +(t)))

ẋ−(t) =
4∑

j=1

hj
σ(t)(ρ(t))(Aj+

σ(t)x
−(t) + Lj

σ(t)(y − Cx−(t)) + B−u−(t)−

(Aj+
σ(t) − Aσ(t),ρ,ξ0 )(|x−(t)|+ x−(t)))

(11)

if the matrix
4∑

j=1

hj
σ(t)(ρ(t))(Aj−

σ(t) − Lj
σ(t)C) is Metzler and the matrix

4∑
j=1

hj
σ(t)(ρ(t))(Aj+

σ(t) − Lj
σ(t)C) is Hurwitz ∀ρ(t) ∈ ∇σ(t) and ∀ξ(t) ∈ Ξ.
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Switched Interval Observer Design + Elements of Proof

À Sufficient conditions for boundedness

The upper estimation error e+(t) = x +(t)− x(t) is governed by the following equation

ė+(t) =
4∑

j=1

hj
σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − Lj

σ(t)C)e+(t) + δj+
σ(t)(t) (12)

where by construction δj+
σ(t)(t) ≥ 0.

Remark 1. It’s clear that if
4∑

j=1

hj
σ(t)(ρ(t))(Aj−

σ(t) − Lj
σ(t)C) is Metzler then

4∑
j=1

hj
σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − Lj

σ(t)C) is also Metzler for any Aσ(t),ρ,ξ0 in the interval:

Aj−
i ≤ Ai,ρ,ξ0 ≤ Aj+

i ∀i ∈ I,∀j ∈ {1, 2, 3, 4}

Under Lemma 1, if
4∑

j=1

hj
σ(t)(ρ(t))(Aj−

σ(t) − Lj
σ(t)C) is a Metzler Matrix, then the dynamics

of e+(t) is positive, it follows that e+(t) ≥ 0 á x(t) ≤ x +(t).
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σ(t)(ρ(t))((Aσ(t),ρ,ξ0 − Lj

σ(t)C) is also Metzler for any Aσ(t),ρ,ξ0 in the interval:

Aj−
i ≤ Ai,ρ,ξ0 ≤ Aj+

i ∀i ∈ I, ∀j ∈ {1, 2, 3, 4}

Under Lemma 1, if
4∑

j=1

hj
σ(t)(ρ(t))(Aj−

σ(t) − Lj
σ(t)C) is a Metzler Matrix, then the dynamics

of e+(t) is positive, it follows that e+(t) ≥ 0 á x(t) ≤ x +(t).
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Switched Interval Observer Design + Elements of Proof
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Switched Interval Observer Design + Elements of Proof

Á Sufficient conditions for convergence

The dynamics of the total error e(t) = x +(t)− x−(t) is given by

ė(t) =
4∑

j=1

hj
σ(t)(ρ(t))

(
(Aj+
σ(t) − Lj

σ(t)C)e(t) + δj
σ(t)(t)

)
(13)

where by construction δj
σ(t)(t) ≥ 0.

å Problem 2.

Find the gain matrix Lj
σ(t) such that

4∑
j=1

hj
σ(t)(ρ(t))(Aj+

σ(t) − Lj
σ(t)C) is Input-to-State

Stable with respect to δj
σ(t)(t).
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Switched Interval Observer Design + LMIs formulation

The closed-loop stability is studied using a Switched Fuzzy ISS-Lyapunov
Function

V (e(t)) =
N∑

i=1

4∑
j=1

λi (t)hj
i (ρ(t))eT (t)P j

i e(t) (14)

where λ(t) represent the indicator function specifying the current active subsystem
and P j

i represent the i-th diagonal positive matrix.
These properties are satisfied

λi (t) ≥ 0, ∀i ∈ I,
∑N

i=1 λi (t) = 1,
∑N

i=1 λ̇i (t) = 0
N∑

i=1

4∑
k=1

λi (t)ḣk
i (ρ(t)) = 0

It can be shown that:

V̇i (e(t)) < −εVi (e(t)) + γ

N∑
i=1

4∑
j=1

λi (t)hj
i (ρ(t))δj

i
T (t)δj

i (t) (15)

Asymptotic stability is no longer ensured
Convergence in a ball around the origin, to be minimized using ISS property
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Switched Interval Observer Design + Elements of Proof

Theorem 2.
Assuming that

N∑
i=1

λi (t)|ḣk
i (ρ(t))| ≤

N∑
i=1

λi (t)φk
i (16)

where φk
i ≥ 0 (k = 1, .., 4) are given scalars, if there exist, diagonal positive definite

matrices P j
i , matrices W j

i and Mi , ∀i ∈ I, j = {1, . . . , 4}, γ > 0 for given positive
scalars ε and ε such that the following conditions hold

min
P j

i ,Mi ,W
j
i

γ

P j
i � 0 (17)

Pk
i + Mi � 0 (18)
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Switched Interval Observer Design + LMIs formulation

... Λj
i + εP j

i +
4∑

k=1

(φk
i Pk

i + Mi ) P j
i

P j
i −γIn

 ≺ 0 (19)

P j
i Aj−

i −W j
i C + εP j

i ≥ 0 (20)
where

Λj
i = Aj+

i
T P j

i − CT W j
i

T + P j
i Aj+

i −W j
i C (21)

Then the proposed observer can estimate the lower and upper bounds of the state
vector x(t) for any switching signal, where Lj

i = P j
i

−1W j
i .
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Experimental validation

The experimental data are acquired with a prototype vehicle;
The run was performed on at test track located in the city of Versailles-Satory
(France);
The track is 3.5Km length with various curve profiles allowing vehicle dynamics
excitation.

Several sensors are implemented on the vehicle:
1 An inertial unit provide the yaw rate r measurement;
2 An absolute optical encoder to measure the steering angle δf ;
3 An odometer to measure the vehicle longitudinal speed vx ;
4 A high precision Correvit sensor provide a measure of the sideslip angle 2.

2This measure is not used for observer design. It serves only for observer estimation
evaluation.
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Experimental validation

The longitudinal velocity
should be treated as a
time-varying parameter;

The cornering stiffness
parameters are affected
by 10% uncertainty in
their nominal value.

In this scenario, the
lateral forces reach the
nonlinear zone.

Figure: Steering angle.

Figure: Longitudinal velocity.
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Experimental validation
Consider the following switching law

σ(t) =

 1 if 0 < vx ≤ 6m.s−1

2 if 6m.s−1 < vx ≤ 11m.s−1

3 if 11m.s−1 < vx ≤ 16.6m.s−1
(22)

Figure: Switching signal σ(t).
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Experimental validation
Solving the linear matrix inequalities in theorem 2, gives the solutions

P1
1 =

[
0.0080 0

0 0.0205

]
, P2

1 =
[

0.0080 0
0 0.0205

]
, P3

1 =
[

0.0080 0
0 0.3545

]
P4

1 =
[

0.0080 0
0 0.3396

]
, P1

2 =
[

0.2891 0
0 0.4252

]
, P2

2 =
[

0.2891 0
0 0.4465

]
P3

2 =
[

0.2870 0
0 0.5521

]
, P4

2 =
[

0.2870 0
0 0.5521

]
, P1

3 =
[

0.0673 0
0 0.3219

]
P2

3 =
[

0.0673 0
0 0.3171

]
, P3

3 =
[

0.0673 0
0 0.3407

]
,P4

3 =
[

0.0673 0
0 0.3407

]

L1
1 = 103

[
−0.0136
4.3830

]
, L2

1 = 103
[
−0.0078
4.3813

]
, L3

1 =
[
−70.1966
260.5428

]
, L4

1 =
[
−68.2978
272.1352

]
L1

2 =
[
−11.1729
153.0217

]
, L2

2 =
[
−6.2345
145.5492

]
, L3

2 =
[
−12.6483
120.0691

]
, L4

2 =
[
−7.7325
119.1450

]
L1

3 =
[
−19.1574
331.7307

]
, L2

3 =
[
−13.6983
336.8248

]
, L3

3 =
[
−19.5678
314.5372

]
, L4

3 =
[
−14.0961
316.8263

]
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Experimental validation

Figure: Interval observer of Lateral velocity.

GTAA 2017 | IBISC | October 18, 2017 25 / 28



Experimental validation

Figure: Interval observer of yaw rate.
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Conclusion

Robust estimation of lateral velocity and yaw rate using interval observers;

Vehicle model subject to interval uncertainties (cornering stiffness &
longitudinal velocity);

The simulation results demonstrate the validity of the proposed approach.

The convergence time is short and the intervals width are tight.
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Thank you for your attention!

Robust estimation of vehicle lateral velocity and yaw rate
using Switched T-S Fuzzy Interval Observer
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